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A fully nonlinear numerical method is developed to study the viscous interactions of 
a pair of vortex tubes rising toward a free surface. The numerical theory uses 
Helmholtz’s decomposition to treat the irrotational and vortical components of the 
flow as separate nonlinearly coupled equations. The laminar interactions of a pair of 
vortex tubes with a clean free surface a t  intermediate Froude and Weber numbers 
and a low Reynolds number show two distinct phases. During the rise phase of the 
vortex pairs, instabilities lead to the formation of helical vorticity. The rotation of 
the helical vorticity around the primary vortex tubes causes an unsteady oscillation 
in the free-surface elevation. During the reconnection phase, the helical vortex sheets 
get narrower and attach themselves to  the free surface. The normal connections of 
cross-axis vorticity with the free surface give whirls. The free-surface elevation is well 
correlated with the vortical pressure. The numerical results agree qualitatively with 
experimental measurements. 

1. Introduction 
The experiments of Sarpkaya & Henderson (1984) and Sarpkaya (1986) show that 

a pair of rising trailing-tip vortices shed by a submerged delta wing may interact 
with free surfaces to form striations and scars. The free-surface striations, which are 
normal to the wing’s track, occur during the initial phases of the interaction. The scar 
features, which form after the striations, are two depressions that are parallel to  the 
wing’s track. At high Froude numbers Sarpkaya & Suthon (1990, 1991) observe that 
the free-surface displacement is large and that whirls may form in the scar region a t  
the ends of the striations. The links among the striations, scars, and whirls are not 
well understood. The present numerical simulations of pairs of vortex tubes 
interacting with a clean free surface help to explain the flow topology. Dommermuth 
(1992) describes the flow topology of vortex tubes interacting with a no-slip wall 
which has applications to heavily contaminated free surfaces a t  low Froude numbers. 

Figure I reproduces photographs from the experiments of Sarpkaya & Suthon 
(1990) which show the striated and scarred free-surface signature of a rising vortex 
pair. The axis of the vortex pair points from the bottom of the page to the top of the 
page. Figure I (a) shows the oval which forms above the vortex pair. This is primarily 
a two-dimensional feature, but there is evidence of striations forming along the axis 
of the vortex pair. The striations are the transverse undulations in the free-surface 
elevation. Figure 1 ( b )  shows the scars that form on both sides of the oval. The scars 
are the two longitudinal dips in the free-surface elevation. In  figure 1 ( c )  the striations 
and scars have intensified. Figure 1 ( d )  illustrates the formation of dimples by whirls 
in the scar region after the oval and the striations have collapsed. 
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FIGURE 1 .  The scarred and striated signature of a vortex pair on the free surface. (a) Rise of a 
corrugated vortex dome; ( b )  formation of scars and dimples; ( c )  intensificat,ion of scars and 
striations; and ( d )  late stages of scar and striation formation. (These photographs are reproduced 
from Sarpkaya & Suthon 1990 with permission.) 

Dimples on the free surface may indicate the presence of whirls. Whirls are by 
definition vortex tubes that are connected normal to the free surface. Sarpkaya & 
Suthon’s observations indicate that whirls tend to form a t  the ends of the striations. 
They also observe that the striations are the manifestation of a subsurface 
phenomenon that occurs whether or not a free surface is present. Hirsa (1990) uses 
laser-induced fluorescence to show that cross-axis vortices are located below the 
striations that form on a dirty free surface. These cross-axis vortices are convected 
to  the free surface by the self-induced velocity of the primary vortex pair. Hirsa’s 
results are supported by the high-Froude-number results of Sarpkaya & Suthon 
(1991), who use particle traces of the free surface to show the existence of cross-axis 
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vorticity. Sarpkaya’s (1992) studies of a turbulent vortex tube show that tentacle- 
like vortex sheets are thrown away from the outer edges of the vortex core. As the 
vortex sheets interact with the free surface, they either connect normally with the 
free surface or stretch out parallel to the free surface and quickly dissipate. 

Ohring & Lugt (1991) and Lugt & Ohring (1992) discretize the two-dimensional 
Navier-Stokes equations to simulate the fully nonlinear interactions of vortex pairs 
with a free surface. Their numerical results illustrate the formation of ovals and 
scars, but not three-dimensional features such as the whirls and striations. A 
comprehensive review of vortices interacting with a free surface is provided by 
Dommermuth & Yue (1990), who have studied laminar vortex rings and tubes using 
linearized free-surface boundary conditions and a primitive-variable formulation of 
the Navier-Stokes equations. A preliminary version of the present Helmholtz 
formulation of the Navier-Stokes equations with linearized free-surface boundary 
conditions is provided in Dommermuth (1991). 

2. Mathematical formulation 
2.1. Field equations 

Consider the unsteady incompressible flow of a Newtonian fluid under a free surface, 
and let u = u(x, y, z, t )  = (u, v ,  w) represent the three-dimensional velocity field as a 
function of time. Applying Helmholtz’s theorem gives 

u = V$+42, (1) 
where $(x, y, z, t )  is a velocity potential which describes the irrotational flow and 
@(x, y, x ,  t )  = (U,  V ,  W )  is a solenoidal field which describes the vortical flow such that 

VZ$ = 0, 
v-42 = 0. 

Since 9 satisfies Laplace’s equation and the divergence of the rotational field @ is 
chosen to be zero, the total velocity field u conserves mass. Note that @ may contain 
a portion of the irrotational field depending on how the boundary conditions are 
defined. 

Based on this Helmholtz decomposition of the velocity field, define the total 
pressure 17 in terms of a rotational pressure P and an irrotational pressure as follows : 

Here, the pressure terms are normalized by p q  where ti, is characteristic velocity 
and p is the density. Fr2 = q / g L c  is the Froude number and L, is the characteristic 
length. The vertical coordinate z is positive upward, and the origin is located a t  the 
mean free surface. Substituting these decompositions ( 1 )  and (4) into the 
Navier-Stokes equations gives 

(5)  
a% 1 
at Re 

where Re = U,Lc/v is the Reynolds number and v is the kinematic viscosity. 
The field equations and the boundary conditions for the velocity field can be used 

to deduce the rotational pressure in the fluid and the behaviour of the rotational 
pressure near the boundaries. For example, the divergence of the momentum 

-+ ((% + V$) - V) 42 + (42 - V) vq5 = - VP + -vw. 

4-2 
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equations (5 )  used in combination with the mass-conservation equations (2) and (3) 
can be used to derive a Poisson equation for the rotational pressure. This equation 
expressed in indicia1 notation ( Ui = (U,  V ,  W ) )  is 

Similarly, the momentum equations may also be used to prescribe the normal 
derivative of the rotational pressure on the boundaries of the fluid. Thus, according 
to the divergence theorem the rotational pressure is subject to the following 
solvability condition : 

where V is a volume of fluid, S is the surface bounding the volume, and n is the unit 
outward-pointing normal on that surface. 

2.2. Exact free-surface boundary conditions 
Let the free-surface elevation be given by z = q(x, y, t ) .  Then define three vect.ors 
which will be used to derive an exact set of free-surface boundary conditions : 

where n is the unit normal on the free surface, and t ,  and t ,  are two unit tangent 
vectors in the (y, 2)- and (x, x)-planes respectively. 

The Helmholtz decomposition of the velocity field requires one additional 
boundary condition to be prescribed on the free surface. As will be shown, the most 
expedient boundary condition that can be specified is that the normal component of 
the rotational velocity is zero on the free surface: 

- U ~ , - V ~ , + W  
(7; + 7; + 1); 

92.n = = 0. (9) 

This constraint imposed on the rotational velocity field means that the evolution of 
the free-surface elevation is entirely prescribed in terms of the free-surface elevation 
itself and the velocity potential as follows : 

where everything is evaluated on the exact position of the free surface, z = 7. If the 
normal derivative of the potential is chosen to be zero (#% = 0) on all boundaries 
besides the free surface, then the mean free-surface elevation is conserved according 
to the above kinematic condition (10) and an application of Green's theorem. 

In addition to the two kinematic conditions (9) and (lo), there are also three stress 
conditions which must be satisfied on the exact position of the free surface. For later 
reference the total stress tensor in matrix form is: 

a7/at + 7s 4, + 7, 4, - 4 z  = 0, (10) 

G =  
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where it should be recalled that I7 is the total pressure, ( U ,  V ,  W )  is the rotational 
velocity field, and is the potential field. The normal stress on the free surface must 
balance with the atmospheric pressure and the surface tension : 

where Pa is the atmospheric pressure, We = pe L,/T is the Weber number, T is the 
surface tension, and the symbol {}T denotes the transpose of a vector. The fully 
expanded form of the normal stress condition (12) is as follows: 

%gv$.oq$+-- 1 -P 
at Fr2 ' 

Now it is clear that this boundary condition is an evolution equation for the potential 
evaluated on the exact position of the free surface. An interesting feature of this 
equation is the balancing of terms which occurs between the free-surface elevation 
and the rotational pressure in the steady-state limit as Re +. co and We + co . In this 
limit the free-surface elevation is given in terms of the rotational pressure, the 
atmospheric pressure, and the quadratic potential-flow terms : 

Here, the rotational pressure term corresponds to the scars and dimples that form 
above vortex tubes that are near the free surface. 

Note that for fully nonlinear numerical simulations, wherein points are followed on 
the free surface as a function of time, the partial derivative with respect to time in 
(1 3) should be evaluated as a total derivative such that 

This equation is the viscous and rotational counterpart of the inviscid equation first 
derived by Zakaharov (1968) for irrotational flow. 

Let z = (71, T ~ ,  7J model any applied shear stresses on the free surface such as the 
effects of surfactants or wind, then the balance of tangential stresses on the free 
surface may be expressed as: 

t,.(T.nT = fz4, t ;c .nT = t p T ,  (15) 
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where the first equation is the balance of tangential stresses in the (y, 2)-plane and the 
second corresponds to the (x, 2)-plane. The fully expanded form of t h e  tangential 
stress condition is : 

- Vr, + v,+2$,,) 7s - w 2  + K +V,,) 7z 7,) = 7,. ( 1 6 b )  

Here, r, and ry represent the components of the applied shear stresses that are 
respectively in the (y, 2)- and (x, 2)-planes. Unlike the normal stress condition, the 
tangential stress conditions do not provide evolution equations ; rather they describe 
how the diffusion terms in the momentum equations ( 5 )  behave near the free surface. 
As Re + 00, the free surface cannot support shear stresses and the tangential stress 
condition (16) no longer apply. Under these conditions the two kinematic conditions 
(9) and (10) and the normal stress condition (14) are sufficient to describe inviscid 
rotational flow with a free surface. 

The rotational pressure field itself does not require the a priori specification of a 
boundary condition. Recall that  the role of the rotational pressure is merely to 
project the rotational flow field onto a solenoidal field, and in order to be consistent 
with that role, the behaviour of the rotational pressure is specified using the 
momentum equations. Similarly, the rotational pressure is also used to enforce the 
kinematic condition for the rotational velocity (see (9)). Taking the dot product of 
the momentum equations with the unit normal on the free surface provides a 
Neumann boundary condition for the rotational pressure : 

1 
(17) _ _  ap - -n.-- n * ( (42  + V+) . V) 42 - n . (42 .  V) V$ + --n * V2%. 

an at Re 

For the numerical computations, the partial derivative with respect to time is 
evaluated as a total derivative: 

1 
Re - n . ((% + V4). 0) 42 - n - (42 * V) V$ + - n * v2 %. (18) 

The specification of the free-surface boundary conditions using a Helmholtz 
decomposition is now complete. One advantage of the Helmholtz formulation 
relative to  a primitive-variable formulation is the natural and exact transition from 
(i) viscous vortical flow with one normal stress condition, two tangential stress 
conditions, and two kinematic conditions to (ii) inviscid vortical flow with one 
normal stress condition and two kinematic conditions to (iii) potential flow with one 
normal stress condition and one kinematic condition. As a result, depending on the 
type of flow, the most appropriate decomposition and boundary conditions will 
dominate. 



Interactions of a pair of vortex tubes with a free surface 97 

2.3.  Initial conditions 
In addition to the boundary conditions, the initial free-surface elevation and the 
initial total-velocity field also require specification : 

Once again, according to Helmholtz’s theorem, the initial total-velocity field uo can 
be expressed in terms of scalar 4, and vector v, = ($z, $v, velocity potentials: 

u, = V#,+V x yo where V - v ,  = 0. (21) 
The initial velocity field, like the time-dependent velocity field, is required to be 
solenoidal. Therefore, it  can be shown by taking the divergence of (21) that q50 
satisfies Laplace’s equation : 

Here, 4o may represent the effects of currents, the disturbances due to surface- 
piercing and submerged bodies, etc. A similar Poisson equation is satisfied by the 
vector potential v, in terms of the initial vorticity field w o :  

v2#o = 0. (22 )  

V%y, = -o,, (23) 
where o = (w,, wy ,  0,) may be expressed in terms of the curl of the rotational velocity 
at  any instant of time: 

w = V x % .  (24) 
Based on this definition, the vorticity field is itself a solenoidal quantity. 

If the free-surface elevation, potential field, and shear stresses are initially zero 
(T,, = 0, #, = 0, and 7, and 7y = 0 at t = O), then t,he tangential components of 
vorticity (w, and wy) on the free surface are also zero, and according to the tangential 
stress condition (16) the free surface initially behaves like a free-slip wall. Suppose a 
free-slip wall exists on the plane z = 0, then by definition 

u, = 0, v, = 0, w =  0, # z  = 0, (25) 
where the first two equations give zero tangential stresses and the last two equations 
state that there is no flux across the plane z = 0. These boundary conditions for the 
velocities enable us to deduce the behaviour on the free-slip wall of the rotational 
pressure and vorticity, and also the initial conditions for the scalar and vector 
velocity potentials. For example, upon substitution of the boundary conditions (25) 
into the z-component of the momentum equations ( 5 ) ,  it  can be shown that P, = 0, 
where the x-derivative of (3) has been used t o  eliminate the W,, = 0 term. Similar 
arguments may be used to show that the vorticity vector is always normal to a free- 
slip wall, o = (O ,O,wz)  on z = 0. Finally, in regard to  the initial conditions, the 
following relations for the vector velocity potential on the free-slip plane z = 0 can 
be derived: 

2.4. Conservation of energy 
The vector product of the total velocity with the momentum equations (5)  integrated 
over the fluid volume gives a formula for the conservation of energy, and the 
transport theorem in conjunction with divergence theorem may be used to simplify 
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the resulting equations. Upon substitution of the exact free-surface boundary 
conditions into this cnergy equation, the following formula may be derived: 

where u, = (U+ #z, V+ #1/, W+ &) is the total velocity, 8, is the free surface, So is 
the projection of the free surface onto the (x,y)-plane, and ut is the component of 
total velocity that is tangent to the free surface. The first term (dE,,/dt) represents 
the change in kinetic energy integrated over the material volume of the fluid ( V ) ,  the 
second term (dE,,/dt) represents the change in potential energy, the third term 
(dWpa/dt) represents the power input by atmospheric forcing, the fourth term 
(dW,/dt) represents the power in capillary waves, the fifth term (dW,/dt) represents 
the power expended by viscous stresses, and the last term (dW,/dt) represents the 
power input by applied shear stresses. Note that the work due to stresses on all other 
boundaries besides the free surface is assumed to be zero. 

3. Numerical formulation 
The Navier-Stokes equations, and the boundary and initial conditions are 

discretized using fourth- and sixth-order finite differences. The two different orders 
of approximation are used to establish the convergence of the numerical scheme. The 
momentum equations (5 ) ,  kinematic condition (10)) and the normal stress condition 
(14) are integrated with respect to time using a third-order Runge-Kutta scheme. 
Each stage of the Rung-Kutta scheme is formulated to inhibit the accumulation of 
errors in the divergence of the rotational flow field (see Hirt, Nichols & Romera, 
1975). The rotational pressure is used tc. project the rotational velocity onto a 
solenoidal field (3) and (6) with zero normal velocity on the free surface (9) and (18). 
Aliasing errors are controlled using fifth- and seventh-order upwind biasing of the 
convective terms for respectively the fourth- and sixth-order numerical algorithms 
(see Rai & Moin 1991). Similarly, fourth- and sixth-order smoothing schemes are used 
for the free-surface elevation and the potential evaluated on the free surface. 
Laplace's equation for the potential (2) and Poisson's equation for the rotational 
pressure (6) are solved at each stage of the Runge-Kutta scheme, and a solvability 
condition (7) is enforced for the rotational pressure. An iterative scheme in 
combination with Fourier techniques and LU decomposition is used to solve the 
nonlinear three-dimensional elliptic equations (see Appendix B). As shown in 
Appendix A, the z-coordinate is mapped onto a flat plane, and the grid is stretched 
to  resolve the free-surface boundary layer. This mapping is applied to Laplace's 
equation ( 2 ) ,  the Poisson equation for the pressure (6)) the momentum equations (5), 
and all the boundary conditions. Free-slip boundary conditions are imposed on the 
plane z = 0 as initial conditions. If the applied shear stresses are also initially zero, 
this choice of initial conditions will satisfy the tangential-stress boundary conditions 
(16) and, as a result, the free-surface elevation will smoothly evolve from rest. Free- 
slip wall conditions are also used as boundary conditions on the sides and bottom of 
the computational domain so that only one vortex tube has to be modelled in the 
present simulations of a pair of vortex tubes rising toward a free surface. 
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4. Numerical studies 
A schematic picture which illustrates the numerical simulations of a three- 

dimensional vortex pair rising up to a free surface is provided in figure 2. Table 1 
provides the numerical parameters of six computer simulations. These computer 
simulations are used to  establish the validity of the numerical scheme for one set of 
physical parameters. Owing to symmetry only one of the vortex tubes of the vortex 
pair is modelled. Initially this vortex tube is deeply submerged, and then the self- 
induced velocities of the vortex pair cause the vortex tube to rise up to the free 
surface. The primary objective of the present numerical simulations is to help explain 
the formation of striations, scars, and whirls observed in Sarpkaya & Suthon’s (1990, 
1991) experiments. 

A Gaussian core distribution is used to specify the initial vorticity field: 

‘1 (28) 
(wy)o = w c e x ~  (-[(~-xcen)~ + (z-~cen)~I/r;) 

Xcen = 2 0  +xamp cos (YX/W),  Zcen = zo + zamp cos ( Y ~ / w ) ,  J 
where w, is the peak vorticity, rc is the core radius, (x,, zo)  is the mean position of the 
core centre in the (x, 2)-plane, and zamP and zamp are sinusoidal perturbations that are 
applied to the core position. The lengths of the computational domains along the 
x-, y-, and z-axes are respectively denoted L ,  W ,  and D. In terms of the initial peak 
vorticity and core radius the circulation is r = nr: w,. This initial vorticity field is not 
solenoidal, but ths velocity field is solenoidal, and the vorticity field that is 
recalculated from the initial velocity field is also solenoidal (see (21)). 

As is indicated in figure 2 and table 1, the initial conditions for the vortex tube 
studies simulate the rise of a pair of trailing-tip vortices up to a free surface, and the 
sinusoidal perturbations that are applied along the axis of the vortex tube (28) 
simulate one half of the wavelength (A = 2W) of the striations that are observed in 
Sarpkaya & Suthon’s (1990, 1991) experiments (see figure 1).  

The lengths of the vortex tubes (W = 1 )  relative to their spans ( s  = 22, = 2) are too 
short to  permit a long-wavelength Crow instability to occur (Crow 1970). However, 
the experiments of Sarpkaya & Suthon show that a short-wavelength instability 
dominates when the symmetric long-wavelength instability is suppressed by 
generating short vortex pairs ( h / s  < 8.6) or by generating the vortex pairs in shallow 
depth (Iz,l/s < 6) .  In  addition, shallow depths do not allow enough time for vortex 
reconnection to occur across the centre-plane. The numerical simulations presented 
in this paper use Ixol/s = 1 .  

The results of Sarpkaya & Suthon’s and Hirsa’s experiments suggest that the 
striations (nearly uniform corrugations when the free-surface displacements are high) 
are manifestations of a short-wavelength instability. Sarpkaya & Suthon’s measured 
histograms of the wavelengths of the striations relative to the span of the vortex pair 
show that 0.75 < A / s  < 1.25. However, the dye experiments of Sarpkaya (1985) also 
suggest that the instability can occur a t  much longer wavelengths. The present 
numerical simulations of vortex tubes impinging on a free surface concentrate 
on h / s  = 1 because Dommermuth’s (1992) numerical investigations of vortex 
tubes impinging on a wall show that the basic flow topology does not change for 

The Reynolds and Froude numbers are based on the mean half-span is = 1 
and the centreline velocity U, = 2T/(ns) = 1. Based on these scales, the Reynolds 
number is Re = T/(nv) ;  where v is the kinematic viscosity; the Froude number is 

1 < h/s  < 8. 
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FIGURE 2. The numerical simulation of a vortex tube impinging a free surface. Symmetry 
boundary conditions are used on the sides and the bottom of the computational domain. 

Fr = r/(ng;(is)%), where g is gravity; and the Weber number is We = 2pP/(n2sT) ,  
where p is the fluid density and T is the surface tension. The effects of surface 
contamination are not considered. 

As noted by Sarpkaya & Suthon, the free-surface deformation is significant for 
Fr2 > 0.72. For a flapper-plate separation of 3 cm, these Froude numbers correspond 
to We 2 21 and Re 2 4900. The Reynolds number of 200 used in the present numerical 
simulations is lower than Sarpkaya & Suthon's experiments, but the core radius 
( r ,  = 0.25) is reasonable based on Spreiter & Sacks's ( 1  951) analysis of trailing-tip 
vortices. As a result, the inviscid portion of the instability mechanism is preserved. 
The Froude (Fr' = 0.5) and Weber numbers (We = 12.5) are different from the 
experiments, but the ratio Fr2/We = 4T/(pgs2)  = 0.04 is very close to  the ex- 
perimental values. This ratio, which corresponds to a 2.7 cm span, does not vary 
much in the laboratory because the experiments are performed in water using a 
limited range of spans. Note that higher Froude numbers lead to extreme wave slopes 
O(1) and curvature O(100) that cannot be simulated with high accuracy by the 
present numerical algorithm. 

The perseverance of the vortex tube is investigated by adding a fluctuating 
velocity field to the velocity field of the vortex pair (see (28)). The generation of the 
fluctuating velocity field is discussed in Appendix C. The vortical pressure that is 
induced by the fluctuating velocity field will generate spurious high-frequency waves 
on the free surface unless the flow field is given sufficient time to adjust. A method 
for reducing these high-frequency waves is provided in Appendix D. 

4.1. Numerical results 
The spatial accuracy of the numerical simulations of vortex tubes impinging on a free 
surface is determined by the grid resolutions in the fluid volume and the free-surface 
boundary layer, and the order of the approximation. Two one-dimensional energy 
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Item Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 
Order sixth fourth fourth fourth fourth fourth 

Fr2 0.5 0.5 0.5 0.5 0.5 0.5 
We 12.5 12.5 12.5 12.5 12.5 12.5 
re  0.25 0.25 0.25 0.25 0.25 0.25 
WC 16 16 16 16 16 16 

Re 200 200 200 200 200 200 

5 0  1 1 1 1 1 1 
z0 -2 -2 -2 -2 -2 -2 

1 1 
!! 
k l x  
4 0 0 0 0 5 5 
L 4 4 4 4 4 4 
W 1 1 1 1 1 1 
D 4 4 4 4 4 4 
At 0.005 0.005 0.005 0.005 0.005 0.005 
Ntlnl, 2501 2501 200 1 200 1 2501 2501 
Nit,, 2 2 2 2 2 2 
Inlm 97 97 97 73 97 97 

K m m  97 97 97 73 97 97 
Y 0.20 0.20 0.40 0.20 0.20 0.20 
TABLE 1. Data for a pair of vortex tubes impinging on a free surface. Fully nonlinear free-surface 
boundary conditions are used on the top of the computational domain and free-slip boundary 
conditions are used on the sides and bottom. The spatial accuracy is either fourth- or sixth-order. 
The Reynolds, Froude, and Weber numbers are respectively denoted by Re, Fr,  and We. The initial 
core radius and peak vorticity are denoted by r, and 0,. The mean position of the vortex core is 
centred a t  (xo ,zo) .  The initial amplitudes of the sinusoidal perturbations in the core's posi_tion are 
xamP and z,,,,~. .ii is the initial r.m.9. velocity of the fluctuating velocity field, and k is the 
wavenumber where the maximum occurs in the spectrum of the fluctuating velocity field (see 
Appendix C). St is the adjustment time, which is described in Appendix D. The lengths of the 
computational domain along the x-, y-, and z-axes are respectively L, W ,  and D. The time step is 
At. The number of time steps is N,,,, and the number of iterations required to  solve the nonlinear 
elliptic equations is Niter (see Appendix B). The number of grid points along the x-, y-, and z-axes 
are respectively I,,,,,,, J,,,, and K,,,. The parameter y specifies the grid resolution in the free- 
surface boundary layer as explained in Appendix A. 

Xamp -0.125 -0.125 - 0.125 -0.125 -0.125 -0.125 
'amp -0.125 -0.125 -0.125 -0.125 -0.125 -0.125 

0 0 0 0 0.125 0.25 
- - - - 

Jmax 25 25 25 19 25 25 

spectra are defined in Appendix E to measure the accuracy of the numerical 
simulations. Figure 3 plots the energy spectra of the velocity components for four 
different laminar simulations at a time when the primary vortex tube is strongly 
interacting with the free surface. 

The first numerical simulation (Run 1 of table 1 )  uses a sixth-order approximation 
and 97 x 25 x 97 grid points to resolve the fluid volume, with five grid points in the 
free-surface boundary layer based on a boundary-layer thickness 6 = O(Re-1). The 
second simulation (Run 2) is fourth order and uses the same grid resolution as the 
first simulation. The third simulation (Run 3) is fourth order and uses 97 x 25 x 97 
grid points to resolve the fluid volume, with 2i grid points in the boundary layer. The 
fourth simulation (Run 4) is also fourth-order and uses 73 x 19 x 73 total grid points 
with five grid points in the boundary layer. As is evident in figure 3, all of the 
numerical simulations agree very well except at the highest wavenumbers. The only 
evidence of an energy pileup occurs where the energy density is 16 decades lower than 
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FIGURE 3. One-dimensional energy spectra of the velocity components, plotted for four different 
numerical simulations a t  time t = 10: -, - - , and - - - - - - ,  denote Runs 1, 2 ,  3, and 4 of 
table 1. The curves are indistinguishable excepi a t  the highest wavenumberw. 

the energy density a t  lowest wavenumbers. The energy pileup is probably due to 
accumulation of round-off errors. 

Figure 4 compares the energy spectra of the laminar and transitional simulations. 
The r.m.s. velocities of the fluctuating velocity fields are 0.125 and 0.25 for the two 
transitional simulations (Runs 5 and 6 of table 1) .  The initial kinetic energies of the 
fluctuating velocity fields are approximately 25 and 75% of that of the primary 
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FIGURE 4. One-dimensional energy spectra of the total velocity, plotted for three different 
numerical simulations a t  time t = 10: -, - - - - ,  and --- denote Runs 1,  5 ,  and 6 of table 1. 

vortex tube so that the total energies of the transitional simulations are initially 
greater than those of the laminar simulation. Turbulent interactions decrease the 
energy densities a t  the lowest wavenumbers so that for time t 10 the kinetic 
energies of the transitional simulations are less than those of the laminar simulation. 
This effect is observed in figure 4 (a, b )  for the zero wavenumbers, where the laminar 
simulation has an energy density that is greater than or equal to the energy densities 
of the transitional simulations. Figure 4(a, b)  also shows that the transitional 
simulations have a slight energy pileup a t  the highest wavenumbers. 

Figures 5 and 6 show the energy balances based on (27) of the laminar and 
transitional simulations. The transitional simulations, unlike the laminar simulation, 
use an atmospheric forcing term to reduce the impulse of the vortical pressure (see 
Appendix D). For all of the simulations the potential energy (ETv) is less than 2 % of 



104 D . G . Dmmermuth 

2.4 

1.8 

0.6 

0 
0 3 6 9 12 

Time, t 
FIGURE 6. The energy balances of transitional vortex tubes impinging a free surface, (a) Run 5 and 
( b )  Run 6. -, ----, - - - - - - ,  and-----  denote the kinetic energy (Euu), the potential energy 
(lOOE,,), the negative of the work due to surface tension ( -  100 WT), the negative of the work due 
to atmospheric forcing (- 100 W,,), and the negative of the work due to viscous stresses (- Wv). 

Time, t 
FIGURE 7 .  The integrated absolute error in the energy as a function of time. 

_..... , and ---- denote Runs 1-6 of table 1. 
- , 

the kinetic energy (Euw), and the work due to surface tension (W,) is about 20% of 
the potential energy. The work due to the atmospheric forcing (Wpa) in the 
transitional simulations initially grows rapidly but then levels off due to the 
exponential attenuation in (Dl) .  Viscous dissipation (W,) is the dominant effect, 
especially for the transitional simulations. 

The integrated absolute error in the conservation of energy 

+) = IE,, +E,,- W,- K,- WIk 
is plotted in figure 7 for the numerical simulations listed in table 1. All of the 
numerical simulations conserve energy to within 0.1 YO relative to the initial kinetic 
energy. The sixth-order simulation (Run 1 )  conserves energy best. Run 3 with 2; grid 
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Time, t Time, t 
FIGURE 8. The creation and attenuation of enstrophy. (a) The axial and ( b )  the cross-axis 

components. -, - ~ ~ -  , and denote Runs 1, 5, and 6 of table 1. 

"lmin ~ m a x  I ~ r l r n a x  lrzzlmax I ~ y l m a x  IVvuImm 

R,un 1 -0.128 0.0781 0.323 2.78 0.0201 0.0696 
Run 5 -0.0708 0.0535 0.119 0.573 0.0182 0.147 
Run 6 -0.0604 0.0793 0.172 0.645 0.0772 0.320 

TABLE 2. Free-surface elevations and radii of' curvature for three different runs 

points in the free-surface boundary layer conserves energy better than Run 2, which 
has 5 points. This result indicates that for clean free surfaces numerical accuracy 
depends equally on the grid resolutions of the fluid's interior and the free-surface 
boundary layer. 

Figure 8 shows the axial and cross-axis components of' enstrophy. The axial 
vorticity steadily decreases as a function of time. Based on two-dimensional vortices 
with Gaussian cores, the rate of attenuation of the axial enstrophy is 

E, (w, )  0~ (1 +4tve/(7~$))- ' ,  

where t is the time, rC is t h e  core radius, and ve is an effective viscosity. For the 
laminar simulation ve z 0.0052, which corresponds to a Reynolds number of 200. For 
the two transitional simulations v, x 0.0059 and 0.0094, so the most energetic 
transitional simulation (Run 6 of table 1) is almost twice as viscous as the laminar 
simulation. 

For t < 1 there is a rapid increase in the cross-axis vorticity. This increase 
corresponds t o  the inviscid instability that Sarpkaya & Suthon (1990) observed in 
their experiments. Dommermuth's (1992) numerical simulations of vortex tubes 
impinging on a wall show a similar initial increase in the cross-axis enstrophy. 
However, unlike the wall simulations, the free-surface simulations show no evidence 
of a secondary instability for t 9 1 .  An increase in cross-axis vorticity would 
typically occur as strong secondary vortices are shed from the wall, but for the 
results that are illustrated in figure 8 ( b )  the free-aurface displacement is not large 
enough to generate strong secondary vortices. 

Table 2 illustrates that  the shedding of secondary vorticity does not occur despite 
strong free-surface nonlinearity. We observe that the maximum and minimum free- 
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surface elevations and the radii of curvature are the same order as the core radius, 
and the maximum wave slopes are approximately 75% of the Stokes two- 
dimensional breaking-wave criterion. The extrema of the transitional simulations 
(Runs 5 and 6) are generally less than the laminar simulation (Run 1) because the 
adjustment procedure that is used in the transitional simulations eliminates spurious 
standing waves. I n  a ship wake the Froude number of a characteristic eddy is two 
orders of magnitude less than the present numerical simulations (Dommermuth & 
Yue 1990), such that the free-surface nonlinearity would also be much less. This 
evidence supports Hirsa et al.’s (1990) conclusion that surface contamination may be 
the dominant mechanism for generating secondary vorticity in the far wake of a ship. 
However, more studies are required at higher Reynolds numbers and lower Froude 
numbers to determine if changes in the free-surface curvature and slope can lead to 
the generation of secondary vorticity in ship wakes. 

As a vortex tube interacts with itself and its neighbours, sheets of helical vorticity 
are spiralled off. The origin of the sheets appears to  be the result of an inviscid 
instability that is initiated by large changes in curvature along the axes of the 
primary vortex tubes. When the wavelength of the instability is very short, the 
sheets of helical vorticity manifest themselves as beads of cross-axis vorticity. 
Similar bead-like structures are observed in Sarpkaya & Suthon’s (1991) dye studies 
(see their figures 8 and 9) and Sarpkaya’s (1992) dye studies (see his figure 3).  Figure 
9(a-g) (plate 1 )  shows the isosurfaces of the vorticity for a laminar vortex tube 
impinging a clean free surface. Figure 9 (a-c) illustrates the initial unwinding the 
cross-axis vorticity. As is evident from the flat appearance of the free surface, the 
initial instability is a sub-surface phenomenon that is not influenced by the presence 
of a free surface, which also agrees with the observations of Sarpkaya & Suthon 
(1990). As the cross-axis vortex tubes rotate around and translate with the primary 
vortex tube, they reconnect with their images across the centreplane (x = 0). 
Sarpkaya & Suthon’s (1990, 1991) observations and Dommermuth’s (1992) 
computations show that the reconnections occur a t  the front stagnation point of the 
Kelvin oval. 

The free surface rises above the primary vortex tube to form an oval shape and 
secondary vorticity is shed in the scar region as seen in figure 9 (c,d). The formation 
of ovals and scars is a two-dimensional phenomenon. As we will see, the formation 
of striations and whirls by the cross-axis vortex tubes is three-dimensional, The 
influence of the primary vortex tubes and the cross-axis vortex tubes on the free 
surface is similar to the influence of a cam on the valves of an engine. The axle of the 
cam represents the primary vortex tube, and the rocker arms of the cam represent 
the cross-axis vortex tubes. The eccentric rotation of the cam induces a reciprocating 
motion to  the valves, just as the orbit of the cross-axis vortex tubes around the 
primary vortex tubes causes striations to appear on the free surface. Figure 9(c) 
shows a fully developed cam vortex that is partially entrained in a wave crest. 

Figure 9(d-f) shows that the cross-axis vortex tubes disconnect from the 
centreplane and reconnect with the free surface. The reconnection process is similar 
to Saffman’s (1990) theoretical model and Melander & Hussain’s (1988) cut-and- 
connect model. As the vortex pair rises up the centreplane toward the free surface, 
the velocities induced by the vortex images above the free surface cause the vortex 
pair to split, and the two primary vortex tubes move apart parallel to the free 
surface. The cross-axis vortex tubes are stretched, and their cores flatten to form an 
elliptical cross-section (see figure 9d).  A new stagnation point forms in front of the 
primary vortex tube on the free surface. At this stagnation point a contact zone is 
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FIGURE 9. A laminar vortex tube impinging a free surface. The isosurfaces of the cross-axis vorticity 
(w:+w:)' =0.2, the positive axial vorticity w,=0.2, and the negative axial vorticity w,=-0.2 are denoted 
by green, red, and blue colours at different instants of time: (a) r=O, (b) r=2, (c) t=4, (d) r=6, (e) r=8, 
fl t=lO, and (s) r=12. The black lines outline the edges of the computational domain, which includes the 
free surface. The images have been reflected about the (x,z)-plane. This flow visualization study is based on 
the results of Run 1 of table 1. 

DOMMERMUTH (Facing p .  106) 
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FIGURE 10. A transitional vortex tube impinging a free surface. The isosurfaces of the cross-axis vorticity, 
the positive axial vorticity, and the negative axial vorticity are denoted by green, red, and blue colours at 
different instants of time. The isosurface levels are 0.5 for parts (a) - (g) and 0.2 for part (h). The time instants 
are: (a) t=O, (b) r=2, (c) t=4, (d) t=6, (e) t=8, v) t=lO, (g) f=12, and (h) f=12. This flow visualization study 
is based on the results of Run 5 of table 1. 

DOMMERMUTH 
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formed, and vorticity diffusion in the contact zone lcads to the formation of a bridge 
(see figure 9e). The vortex lines in the bridge are normal to the free durface. The 
reconnection is complete in figure 9 (f). While the reconnection is occurring, 
secondary vorticity is shed from the outboard side of the scar region, In figure 9 (d-f) 
the red bands in the scar region are the boundary layers of the blue bands of shed 
secondary vorticity. The reconnection of cross-axis vorticity occurs on the outboard 
sides of the vortex pair where Sarpkaya & Suthon (1990, 1991) observe the formation 
of whirls and dimples (see figure 1 ) .  

The vortex structure that is illustrated in figure 9(g) has a snail-like shape. The 
point where a cross-axis vortex tube is perpendicular to the free surface corresponds 
to the ‘mouth’ of a ‘snail’ vortex. The other cross-axis vortex tube corresponds to  
the ‘back ’ and ‘base ’ of a snail vortex. The striations that form above the base of 
a snail vortex are similar to the slime trails that are left by late-night visits of 
Southern California’s notorious garden-variety snails. The spheroids that form in the 
centre of a snail vortex, which is the centre of the primary vortex tube, are called 
cup-shaped features by Rogers & Moser (1991). The cups occur in the regions of high 
vortex stretching that are produced by the strain fields of the primary and cross-axis 
vortex tubes. In  figure 9 (f, g) the cross-axis vortex tube that is on the back portion 
of the snail vortex is moving toward the front stagnation point where i t  too will 
connect with the free surface. 

Figure 10(a-h) (plate 2) shows the isosurfaces of vorticity for a transitional vortex 
tube impinging a clean free surface (see Run 5 of table 1) .  Except for part ( h ) ,  all of 
the plots in figure 10 use a higher isosurface level than the laminar simulation t o  
eliminate the high wavenumber components. This artifice had also been applied to 
the more energetic transitional simulation (Run 6), but only remnants of the primary 
vortex tube could be identified. 

As illustrated in figure 10(a-h), the primary vortex tube organizes the fluctuating 
velocity field, and we also observe that’ the fluctuating velocity field decays much 
faster than the primary vortex tube. The numerous cross-axis vortex tubes that spin 
around the primary vortex tube are similar to the tentacle-like sheets that peel off 
a turbulent vortex (see figures 7 and 8 of Sarpkaya 1992). For a transitional vortex 
tube, just like a laminar vortex tube, the reconnections with the centreplane and the 
free surface tend to occur a t  the front stagnation point of the Kelvin oval. Figures 
10 (b-e) and 10 (e-g) respectively show reconnection with the centreplane and the free 
surface. Figure lo@) shows the isosurfaces at a lower level. Comparing figure 10(h) 
to figure 9 (9) shows that the transitional vortex tube has twice as many reconnettions 
with the free surface as the laminar vortex tube. Figure 10 (b-d)  also shows that the 
cross-axis vortex tubes amalgamate at  the stagnation points on the centreplane. 
Amalgamation is not observed on the free surface because the cross-axis vortex tubes 
have lost too much energy. Sarpkaya’s (1992) numerical and experimental studies of 
the whirls generated by a turbulent vortex tube suggest that amalgamation can give 
a reverse energy cascade, whereby energy is transferred from high to low 
wavenumbers. 

Figures 11 and 12 show contour plots of free-surface quantities for the laminar and 
transitional simulations. The primary vortex tube is moving from the left (x = 0) to  
the right (x = 4) side of the page. Figure 11 (a)  shows that undulations in the free- 
surface elevation occur as a laminar vortex tube impinges a free surface. The 
similarities between figures 1 1  ( a )  and 11 ( b )  show that these undulations may be 
related to the vortical pressure term in the free-surface boundary conditions (see 
(14)). The rotation of the cross-axis vortices around the primary vortices (see figures 
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FIGURE 11. Contours of free-surface quantities for a laminar vortex tube: (a)  7,  ( b )  P ,  ( c )  u, ( d )  v ,  
corresponding to t = 2.5, and ( e )  7,  ( f )  P ,  ( 9 )  w,, corresponding to t = 12.5. The contour extremes 
and increments are: (a )  -0.025 to 0.07 by 0.005; ( b )  -0.045 to 0.11 by 0.005; ( c )  0 to 0.4 by 0.02 ; 
( d )  -0.028 to 0.028 by 0.0028; ( P )  -0.07 to 0.035 by 0.005; ( f )  -0.19 to 0.07 by 0.01 ; and ( 9 )  -0.42 
to 0.42 by 0.04. Solid and dashed lines respectively denote positive and negative quantities. These 
contours plots have been reflected about the (x,z)-plane based on the results of Run 1 of t'able 1 .  

9 and SO)  cames axial variations in the vortical pressure and unsteady undulations 
in the free-surface elevation. The contour plots of the free-surface velocities in figure 
11 (c, d )  show that water particles are convected away from the centreplane of the 
vortex pair due to influence of the primary vortices, and down the sides of the 
undulations due to the cross-axis vortices. The similarity of these results to Sarpkaya 
& Suthon's (1991) observations (see their figure 6a)  suggests that, these undulations 
are related to the formation of striations. 

Figure 11 (e-g) shows that a pair of whirls eventually forms at the tips of the 
undulations where the cross-axis vortices reconnect with the free surface, which also 
agrees with Sarpkaya & Suthon's observations (see their figure 12). Figure 1 1  ( e ,  f )  
shows that the contours of the free-surface elevation and the vortical pressure are 
still correlated, but neither the free-surface elevation nor the vortical pressure 
appears to be strongly affected by the reconnection of the cross-axis vortices with the 
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FIGURE 12. Contours of free-surface quantities for a transitional vortex tube. (a)  7, ( b )  P, (c) w,, (d) 
oy, ( e )  w,, corresponding to time t = 12. The contour extremes and increments are: (a) -0.025 t o  
0.035 by 0.005; ( b )  -0.08 to 0.1 by 0.01; (c) -0.24 to 0.24 by 0.04; (d )  -0.7 to 0.5 by 0.2; and (e) 
-1 to 1 by 0.1. These contour plots are based on the results of Run 6 of table 1. 

free surface. Based on Dommermuth’s (1992) numerical simulations of vortex tubes 
impinging on a wall, the strength of the cross-axis vortices is increased by the 
shedding of secondary vorticity. Strong vortex shedding does not occur in the 
present free-surface simulations. If vortex shedding did occur and the cross-axis 
vortices got stronger, then dimples and upwellings could form on the free surface. 
Some possible mechanisms for generating secondary vorticity and strengthening the 
cross-axis vorticity include increasing the Reynolds number, the Froude number, or 
the surface contamination. 

The contour plots in figure 12 show the signature of a pinched vortex tube whose 
axis is parallel to the free surface. For this transitional simulation, just like the 
preceding laminar simulation, the free-surface elevation (figure 12 a )  and the vortical 
pressure (figure 12 b )  are well correlated. The contours of the vorticity components 
in figure 12(c-e) show that the free-surface disturbance a t  (x x 2, y x 1) is due t o  a 
vortex tube whose axis is parallel to  the free surface rather than normal. Flow 
visualization studies indicate that a pinched vortex tube grazes the free surface near 
the centre of the contour plots where the disturbances are located. This event 
appears to be similar to the splat models that are described in Hunt (1984) and 
Leighton et al. (1991). Although the primary vortex tube is torn apart in this 
transitional simulation, its remnants sweep cross-axis vorticity to the point where 
whirls form in the laminar simulations (see figure 12e for x 2 3). The pressure 
disturbance of the four whirls causes a single upwelling in the free-surface elevation. 
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Time, t 
FIGURE 13. Cross-correlation coefficient of the free-surface elevation and the vortical pressure : 

- ~ _ _ _  , and denote Runs 1, 5, and 6 of table 1. 

The preceding examples of laminar and transitional vortex tubes impinging on a 
clean free surface suggest that  the free-surface elevation is well correlated with the 
vortical pressure. Let I, and u, denote the length and velocity of a characteristic 
eddy, then the timescale of the vortical and wavy motions are respectively t, - l e / u e  
and t, w (Ze/g)i, where g is gravity. The ratio of these two timescales is given in terms 
of the Froude number: Fr = t,/t, = u,/(gZ,)i. At low Froude numbers, when the 
timescale of the vortical motions is longer than the timescale of the wavy motions, 
we expect the free-surface elevation to  balance with the vortical pressure r,~ x J’F P. 
The contour plots in figures 11 and 12 tend to support this balance of terms. 

A cross-correlation coefficient co is defined in Appendix E (see (E3)). and the 
coefficients are plotted in figure 13. The laminar simulation (Run 1) and the 
transitional simulations (Runs 5 and 6) have very strong correlations between the 
free-surface elevation and the vortical pressure (co 3 0.95 for t 2 4). The correlation 
of the traneitional simulations are initially poor because of the adjustment procedure, 
but fort 3 2 the transitional simulations have higher correlation coefficients than the 
unadjusted laminar simulation. The small oscillations in the correlation coefficients 
correspond to long standing waves. 

The balancing between the gravity and vortical pressure terms indicates that the 
response of the free surface is hydrostatic - no dispersive waves are generated. If the 
transitional simulations had not been adjusted, the impulse of the vortical pressure 
would have generated standing waves, and these standing waves would have 
obscured the true hydrostatic response of the free surface. 

5. Summary 
As observed by Sarpkaya (1986) and Sarpkaya & Suthon (1990, 1991), an 

interesting aspect of vortex tubes impinging on a clean free surface is the reconnection 
of normal vorticity with the free surface. The numerical simulations illustrate that 
the cross-axis vorticity which is wrapped around the primary vortex tubes can 
connect normally with the free surface. 
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As each primary vortex tube interacts with itself and its neighbours, sheets of 
helical vorticity are shed. The origin of the sheets of helical vorticity appears to be 
the result of an instability that is initiated by large changes in curvature along the 
axes of the primary vortex tubes. The helical vortex sheets are initially tightly 
wound around the primary vortex tubes, but eventually the sheets evolve into beads 
of cross-axis vorticity. The cross-axis vorticity connects across the centreplane of the 
vortex pair a t  the front stagnation point of the Kelvin oval. As the pair of vortex 
tubes rises up to the free surface, an oval bounded by two steep troughs, i.e. scars, 
forms above the centre of the pair. The formation of the oval and the scars is a two- 
dimensional phenomenon that is caused by the primary vortex tubes. The vortex 
pair begins to split apart due to the velocity that is induced by the image of the 
vortex pair above the free surface. 

The connections of cross-axis vorticity across the centreplane are broken, and the 
cross-axis vorticity reconnects with the free surface. This breaking and reconnection 
process causes unsteady oscillations in the free-surface elevation, i.e. striations, that 
are superimposed on top of the two-dimensional features. For laminar flows, whirls 
form where cross-axis vorticity connects normally with the free surface. The scars 
and dimples that form in transitional free-surface flows are due to fluctuations in the 
vortical pressure, which are caused by the passing of eddys close to the free surface. 
A dimple on the free surface can form above an eddy that is either parallel or normal 
to the free surface. 

1 am grateful to Dr Robert Hall and John Talcott of SAIC who helped me with 
theoretical and computational issues. I am especially grateful to Cynde Kae Smith. 
This research is financially supported by the Fluid Dynamics Program at the Office 
of Naval Research. The numerical simulations have been performed on the CRAY 
Y -MP 8/8128 a t  the Primary Oceanographic Prediction System (POPS). 

Appendix A. Mapping 

transformation 
The z-coordinate (7 2 z>,  -D)  is mapped onto a flat plane by using the 

z" = (Z+D)/ (T+D),  (A 1 )  

where D is the depth of the computational domain. The grid is also stretched along 
the i-axis to resolve the boundary layer on the free surface. The positions of the grid 
points are denoted by P, for 1 < k 6 Ktot, where Ktot = 2Km,- 1. The rotational 
velocity ('42) is solved on the odd grid points (Kmax points), and the rotational 
pressure (P)  is solved on the even grid points (Kmax- 1 points). The grid spacing is 
prescribed in terms of a Hermitian polynomial : 

k - 1  6 

where the coefficients a, of the Hermitian polynomial H ( k )  are assigned as follows: 

~ ( 1 )  = I ,  H ( K ~ ~ , )  = 0, ~ ~ ( 1 )  = - y ~ e - t / ( 2 ~ )  

HkIc ('1 = O ,  Hk?c (&ot) = O, (Ktot) = O ,  Hkkkk (Ktot)  = O .  
y is the desired fraction of the laminar boundary-layer thickness (6 = Red) a t  the free 
surface for the rotational velocity grid. Note that the grid spacing is uniformly 
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spaced along the Z-axis for the potential (4) because it does not have a boundary 
layer, and K,,, points are used to discretize $. The grid spacing is also uniformly 
spaced in the horizontal plane for all physical quantities. Furthermore, in the 
horizontal plane the rotational pressure is staggered relative to the rotational 
velocities, the velocity potential, and the free-surface elevation. Extrapolation and 
interpolation between the different grids is performed using fourth- and sixth-order 
schemes depending on the order of the approximation. 

Appendix B. Iterative solutions 
Let x” = F ( x ,  y, z ,  t )  = ( z+D) / ( r  +D) account for the mapping of the free surface 

onto a flat plane, and let k = G ( l )  account for the grid stretching, if any, at the kth 
index. (If there is no grid stretching, then G, = 1 -Kmax and Gii = 0.) If $m(x, y, I c ,  
t )  denotes the mth iterant solution to the velocity potential, then the following 
arrangement of terms provides an efficient algorithm for solving Laplace’s equation 
with exact free-surface boundary conditions : 

$,”,” + $rll + (G:/Dz) $p:’ + (G,,/D2) @+I = - (F: + FE +F,“ - (1/02)) G$ $?k 
- 2Fy Qi $pk - wz G& $?k - ((&, +Fgy) ‘2 + C F ;  +Fi - (‘/02)) ‘,#) $?> (B ’ 

where the Yourier transform with respect to x and y leads to a set of one-dimensional 
Poisson equations that are solved using LU-decomposition. The source term on the 
right-hand side of the equation is updated, and the solution scheme repeats itself. 
Generally, only one to two iterations are required in the Navicr-Stokes code because 
the first approximation is very close to the exact solution. The iterative solution of 
the Poisson equation for the rotational pressure is similar, but the solvability 
condition (7) must be enforced during each iteration. 

Appendix C. The fluctuating velocity field 
The initial fluctuating velocity field ($Yf) is expressed in terms of a vector velocity 

potential (df = (a,  b,  c ) )  to ensure that 4?Yf is solenoidal. If the free-surface elevation 
is initially zero and no shear stresses are applied on the free surface, and free-slip 
boundary conditions are used on the sides and the bottom of the computational 
domain, then the appropriate Fourier decomposition of df is 

Imax-1 Jmax--1 Kmax-1 

a = x a,jkcos(k,x)sin(k,y)sin(Ic,z), 
I i=o i = 1  k-1 

I .I=l j = O  k = l  

where Ic,  = in/L, Icy = jn/ W ,  and k,  = kn/D, and L,  W ,  and D are respectively the 
length, width, and depth of the computational domain. Based on Orszag & Pao 
(1974), the shape of the fluctuating velocity spectrum is chosen as 

S(K) - ~ 4 e x p  ( - z K ~ / & ~ ) ,  (C 2 )  
where K’ = k: + ki  + k,2 and I% is the wavenumber where the maximum occurs in the 
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spectrum. The kinetic energy is equally divided among the non-zero Fourier 
coefficients (aiik, bijk2 eZik) of the vector velocity potential using the formula 

8% Sj 8, (at lc  + f3:jk + c&) = K2 exp ( - 2 K ” / P ) ,  (C 3) 
where Si = 1 for i = 0 or i = I,,,- 1 and Si = t otherwise. 8, and 8, are similarly 
defined, and the signs of the Fourier coefficients are calculated using a pseudo- 
random number generator. The initial fluctuating velocity field is calculated using 
af = V x vf, and the fluctuating velocity field is scaled such that the kinetic energy 
after the projection of %Yf onto a solenoidal field is equal to $WDQ2, where d is the 
r.m.s. velocity. 

Appendix D. The adjustment problem 
The vortical pressure that is induced by the fluctuating velocity field will generate 

spurious high-frequency waves on the free surface unless the flow field is given 
sufficient time t o  adjust - even if the initial free-surface elevation is zero. Wea,ther 
prediction techniques like nonlinear normal mode initialization (Baer & Tribbia 
1977) are not practical because of the complex coupling between the free-surface 
elevation and the potential and vortical velocity fields. A simpler approach is to 
reduce the impulses of the vortical pressure and the normal component of the viscous 
stresses by applying an atmospheric forcing term. The atmospheric forcing is 
prescribed as follows : 

where pa is the amplitude of the pressure and S, is the adjustment time. To minimize 
transients, the adjustment time is chosen to  be greater than the wave period of the 
longest standing wave that is permitted in the computational domain. The amplitude 
pa is prescribed in terms of the vortical pressure and the normal component of the 
viscous stress : 

P, = P, exp ( - i2 / /s ; ) ,  (D 1) 

+ (5 + 4,J 7; + CtJZ + 4,,) r: + (v, + u, + 2Ag) 9% T y ) .  (D 2 )  
In some numerical simulations the potential and free-surface elevation may be 
prescribed in terms of fully nonlinear Stokes waves. In  lieu of determining the exact 
solution to the vortical flow in the free-surface boundary layer of the Stokes waves, 
we can use a similar procedure to reduce the impulse of the tangential stresses on the 
free surface. 

Appendix E. Spectral analysis with a free surface 

defined as 
Two one-dimensional energy spectra of a three-dimensional function F ( x ,  y, z ,  t )  are 

where Si = 1 for i = 0 or i = I,,,- 1 and 4 otherwise. Sj is similarly defined. f,. is the 
Fourier decomposition in the horizontal plane in terms of cosine and/or sine series of 
( ~ ( x ,  y, t )  + D ) b ( x ,  y, 6, t ) ,  where the factor (7S-D); accounts for the mapping from the 
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z- t o  the ?-coordinate system. Based on the initial conditions (28), E, and Ej  
respectively measure the energy densities of the vortex pair in the spanwise and axial 
directions. Corresponding to these one-dimensional energy spectra, an expression for 
the total energy is 

J O  i=o j=O 

The cross-correlation coefficient of two free-surface quantities ( A  and B )  is defined 
as 

I”laX-1 jmnx-1 rmu-i ~ ~ ~ - 1  I n l a c 1  Jmax-1 

i = O  j-0 i = O  j = O  i=o 

(Ii: 3) 
where aij and b, are the Fourier coefficients. 
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